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Mean-field approximation to a spatial host-pathogen model
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We study the mean-field approximation to a simple spatial host-pathogen model that has been shown to
display interesting evolutionary properties. We show that previous derivations of the mean-field equations for
this model are actually only low-density approximations to the true mean-field limit. We derive the correct
equations and the corresponding equations including pair correlations. The process of invasion by a mutant
type of pathogen is also discussed.
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Ecologists have become increasingly aware of the imporinfected host to become infected with probability the
tance of space in evolution and epidemiology. It has becom&ansmissibility. The subscript allows more than one type
apparent that inhomogeneities in spatially distributed poputo be present on the lattice. For the sake of simplicity we
lations can fundamentally change the dynamics of these syshall relabel the statés) as(1) and (,) as (7).
tems[1-5]. A simple lattice host-pathogen model, firstintro- The state of the system is denoted by
duced by Tainak#6], has become a paradigm for the study =(o1,05, ... ,0n), Whereg; is the state at théth site. We
of spatially extended dynamics. In epidemiology, the modekall w;(o) the transition probability per unit time of the state
was introduced by Cominst al. [7] and further studied in at the sitei. The transition probabilities are
Refs.[8—-11]. The model is a probabilistic cellular automa-
ton, in which the state of each site is updated according to 1-(1-g)" if o0y=0
the state of nearby sites. Insight in the role of the parameters ) am _
and global behavior of the system can be obtained from the wilo) =1 1=E=7 ?f o=t W
mean field approximation, when all hosts and pathogens ex- v it o=r,
perience the same local environment. This first approxima-
tion to the dynamics can be improved by including pair cor-wheren;=2;(a;,1) is the number of susceptible neigh-
relations. bors toi, andm;==;5(c;,;,7) is the number of infected

The mean-field equations for this host-pathogen modeheighbors ta. The sum ovejf runs through all the nearest
were first presented by Ranet al. [10] (see also Refs. neighbors. We call the total number of nearest neighbors.
[12,13). Corrections due to pair correlations were consid-Note that, since a susceptible cannot be infected twice, the
ered in Ref[13]. Satulovsky and Tom§14] have also de- probability of becoming infected has to be calculated as
rived the mean-field and pair-correlation equations for a‘one minus the probability of not becoming infected.” This
similar model. In this paper, we argue that the mean-fieldgives rise to the term 4 (1— 7)™. Similarly, an empty site
equations and the pair approximation in R¢f0,12,13 are  can become occupied only by offspring of a single suscep-
actually only approximations to the correct equations. In thdible neighbor host, thus the term-{1—g)".
derivations in these works, the probability of infection of a  Allowing for the simultaneous existence of different types
susceptible host by an infected individual is overcounted, asf pathogens, and mutation between the types, enables the
is the probability of a susceptible host being born on a emptyptudy of evolutionary dynamics, where different types com-
site. These equations are valid only for small rates of transpete for the same susceptibles. When a pathogen of transmis-
missibility of the pathogen and for small birth rates of sus-sibility = reproduces, its offspring has probabiljiy of hav-
ceptible hosts, when these overcountings are not importaning transmissibilityr= e. For simplicity we assume that
We obtain the correct mean-field equations for the well esmay take only discrete valueg=Kke, k=1,2, ... M, where
tablished model of Tainak®] as well as the pair-correlation M = 1/e. The state occupied by a host infected with pathogen
equations. The process of invasion by a mutant type is als, will be labeled ¢). The transition probability per unit

discussed. time of the state at the siieis then given by
We consider a two-dimensional spatial lattice witlsites.
The state of each site can be either en{®y, occupied by a 1-(1-g)" if ¢,=0
susceptible $), or occupied by an infected individual ,§. _la T
At each time step, the susceptible hosts reproduce into each wik(0)= K i @
nearby cell with probabilityg if that cell is not yet occupied. v if oj=mc,

The probability of reproduction is independent for each
neighbor. An infected host dies with probability the viru-  where Q) is the probability that susceptible hosts become
lence. Finally, an infected host causes a neighboring un- infected by the pathogen with transmissibility:

1063-651X/2003/6(#)/0471024)/$20.00 67 047102-1 ©2003 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B7, 047102 (2003

N

o M dPi(1t
Q=X 5 P17t 5 Pt (1= )Pk 3 ';t )=2 (f("o)wp(0)—f(d)wn(0)).  (7)
n=1
with Since f("o) differs from f(o7) only if n=i, only this term
contributes to the sum. Noticing tha&('c,1)= §(;,0) we
et
1— ) (1_Tj)mj g
Y= I (4) dP;(1t)

—qr =(8(e.0[1-(1-g)"])

—(8(o, D[1—(1—7)™]). ®
andpy=1—(1-7)™. ForQ,; andQ,, the terms inpy and Similarly, we obtain
pwm -1 should be discarded and the factor{4) replaced by
(1—ul2). dPi(7,t) m
Approximate mean-field equations for the lattice model dt =(8(o3, D1~ (1= 7)™]= (0, 7)v).  (9)

with a single pathogen type were obtained using simple con-

siderations in Refd.12,13 in the context of the same spatial  The averages can be calculated expanding the binomials
model and in Ref[14] for a similar spatial predator-prey (1—g)" and (1-7)™ and approximating all paifand
model. These equations fail to take into account the fact thatighep correlations by simple products of one-site averages
a susceptible cannot be infected twice or that an empty sitf14,16. We obtain

cannot accommodate more than one offspring. In order to

find the correct mean-field limit of the spatial model, we dx h h 10
have derived the master equation for the probability of the gt~ 2he(9%) —xhy(7y) (10
system as a whole. For the present case of multiple pathogen
types, it reads and
dy
dP(a,t) & . 4 a_ _
dt :izl [P(0y) 0i (7)) — P(0) wipr ()], dt Xhy(ry) vy, (D
= e
(5 where we have defined the auxiliary function

whereP(o,t) is the probability of finding the system in the hg(a)El—(l—a)g. (12

stateo at timet. The sum ovek’ should be included only
when the argument ab;, is 7, in the first term and when
it is 1 in the second term. We refer to R¢fl5] for the
derivation.

Given any function of the state$(o), its ensemble av-
erage is given byf(o))=2,P(o,t)f(o). Differentiating

These are the correct mean-field equations for the host-
pathogen model, taking fully into account the fact that a
susceptible host cannot become infected twice and that an
empty site can accommodate only one offspring. One impor-
tant consequence of including this feature, usually present in

spatial modelgsee, however, Ref14)), is that the equations

with respect ta and using Eq(5) we find _ ! : me _
become nonlinear iy and 7, losing the scaling invariance

d(f(e)) N that allows one to consider only+ 7+v =1 [14]. The ap-
=>> ([f(o)—f(o) oy (o)), (6)  Proximate equations in Reff10,12—-14 correspond to tak-
dt =1 ing hy(a)~{a.

Two types of pathogeng/hen two types of pathogens are
where again the sum ové&r exists only when the argument present, the competition that arises between them gives rise
of wiy is 7 in the first term and when itis 1 in the second to a very rich dynamics. We assume that the two types, that
term. we call resident and mutant, have the same virulenckut

Single type of pathogern the case of a single type of different transmissibility ratess; for the resident and, for
pathogen the sum ové&' disappears and the transition prob- the mutant. There are four one-site variab#®eg, y,, andy.,
abilities simplify to Eq.(1). To obtain an equation for the corresponding to the probabilities of empty sites, susceptible
average probability of empty sites, we consid&fo) hosts, infected by the resident pathogen, and infected by the
=8(0,0). ThenP;(0,t)=(5(0;,0)) is the average probabil- mutant pathogen respectively. Once agairl—x—y;
ity that sitei is in the state (0) in the timé Similarly we — —y,.
defineP;(1,t) for the average probability of susceptible hosts The calculation of the mean-field equations in this case is
and P;(7,t) for the average probability of infected hosts. In more involved, and we refer to RdfL5] for the details. The
the approximation, where thB;’s are independent of the result is
site, they become the mean-field probabilities of each state,
which we call x(t)=P(1}t), y(t)=P(7t), and z(t)
=P(0t)=1—x(t)—y(t). According to Eq.6),

dx
dt:Zhg(gx)—th(YN'l"‘szz), (13
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dyl M y72 =P(10), I’1=P(l7'1), rZZP(sz), W]_:P(OT]_), W2
at - X| 2 helmay2) £ 1= 5 [he(Tyys) (x—oy1, =P(07,), q=P(00), p=P(1q), $;=P(7ri7m), S
(14) =P(7,7,), ands;,=P(7,7,). Of these 14 variables, only

nine are independent. We choose them ta,bg , y», U, rq,

dy, L “w r,, Wi, Wy, ands;,. The other five are related to them by
gt X 2 Ndmyd) +| 1= S h(my,) [ x—vya, q=Z—U—W;—Wy, P=X—U—T;—T,, S$;=y;—W;—Iy
(15) ~Si2 ands,=y,—W,—r,—S;,. We obtain
X
where a:zhg(gu/z)—xhg((rlrfr 7ol 5)1X),
—  hdryi+7y2)
— : (16 d _
h(T1y1) +hy(72y2) dytl Xx{';h (7ar 2 /%) + 1—%)h§(rlr1/x)}—vy1,

It can be showrj15] that the approximate equations lead

to complete invasion if a small amount of a more transmis- u

sible mutant pathogen is introduced in the resident popula- E=(q—u)h{_1(gu/z)—gu[1—hg_l(gu/z)]
tion, whereas the full mean-field equations lead to coexist-

ence if| 7,— 74| is sufficiently small. Invasion happens only —uh, (7o + 7or )/ X)+o(ry+ry),

if | 7,— 74| is larger than a threshold that dependsren

The mean-field equations can be improved by mcludlng _ 4(
pair correlations. This is done by keeping two-site probabili- dt X2 Ph-a(72r2/X)+
ties P;j(@B) in the equations while reducing higher-order

M
) ph,_1(71r1/x)

correlations to at most two-site terms. We do this reduction —Wq Ny (QW2) = 1yr [ 1—hy 1 (717 1+ 7ol 2)/X)]
according to the truncation scheme in R¢fs}, 16-19. —r3h, 1 ((74F 1+ 7or ) /X)) — T g,
Pair correlations for a single type of pathogeRor a
single type there are three possible states per @$g, (1), dw, =u "
and (r), and six two-site correlations. Sinc&;P(ij) W:XEUh{—l(TZrZ/X)"';( 1- —)Uhg 1(71r1/%)
=P(i), only three of them are independent. We call the in-
dependent correlationsu=P(10), r=P(17), and w +v(S1+81,—Wq) —Wih,_1(gu/z),
=P(07). The other three are given bg=P(00)=z—u
—-w, p=P(11)=x—r—u, ands=P(r7)=y—r—w, with ds;,

z=1-x—y. The five independent variables are, therefare,  dt XZrZ{TZ[l he—a(7ar2X) ]+ a(72r 2 1X)}

y, U, r, andw. The details of the calculation can be found in

Ref.[15]. The result is +7§Lr1{71[1_h§71(71r1/)()]+h{*l(Tlrllx)}

dx
— =zh(gu/z) = xh,(7r/x), (17) o
dt +?(1—E)r2h£1(7'1rllx)
—y=xh (rrIx)*—vy (18 s
dt ¢ ' +X 1_5 rlhg_l(TZrzlx)_zvslz,
u
5t = (A= Wh,_1(Qu2)+ur—uh,_y(rr/x) where
=_ hy 1(m1y1+ 72Y2)
—gul1=h,y(guz)], (19 ~ hea(my) +hea(7ays)
The equations for/,, r,, andw, can be obtained by ex-
gi ~ (P=Dha(7r/x)—vr—wh_,(gu/z) changing the subindices 1 and 2 in the equations/for ,,
andw,, respectively.
—7r[1—=h; 1(7r/X)], (20) When 71, 7, andg are small, the functionf(a) can

again be approximated bfx and the approximate pair cor-
relation equations are obtained. We found that the approxi-
mate equations present limit cycles in a much larger range of
parameters than the true mean-field equatigtts. Once

Pair correlations for two types of pathogen#/e assume again, when the process of invasion is studied, we find co-
once again that both the resident and mutant pathogens haggistence of similar types ifr,— 7;| is small. However, the
the same virulence, but different transmissibility rates;  more transmissible pathogen type still wins over any less
for the resident anet, for the mutant. There are four one-site transmissible ones, in the sense that either the less transmis-
variables,z, x, y; and y, and ten two-site variablesu  sible type goes extinct, or its average number is always

w
Ezuhg,l( mr/X)+v(s—w)—wh,_;(gu/z). (21
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FIG. 1. Invasion in the pair approximation fay=0.05, v
=0.2, andr,= 7, +0.05. The curves show the time evolutionygf
andy, (dimensionless unijsfor 7;=0.2 (thin), 0.3 (thicken, and
0.5 (thickes). The initial conditions arex=0.28, y;=0.11, and
y,=0.001. The larger the value of, the closer to extinction the
population gets.
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hosts gets to extinctiofwheny; andy, get close to zero
simultaneously. If we assume that the initial population is
structured in patches, those patches receiving the mutant type
are indeed likely to go extinct. If the patches are very large,
Fig. 1 shows that the number of infected hosts rises again
after the near extinction leading to invasion by the more
transmissible type. However, if the patches are finite, the
population of infected may die. We can estimate the mini-
mum size of these patches so that extinction can be pre-
vented. Ifn, is the total number of sites in the patch and
Yimin» Y2min @re the values assumed vy andy, at the near
extinction time, then the actual number of individuédges
infected by the resident and the mutant pathogen types at this
time isng, Yamin, andng Yomin, respectively. When this num-
ber goes below 1 there is less than one infected site in the
whole patch, and the corresponding pathogen goes extinct.
For 7,=0.2 the resident type disappearsnf is less than
100, whereas the mutant type disappears only if the patch
falls below 45 sites. Typical patches observed in numerical
simulations are larger than this, implying that invasion is
indeed expected. Far,=0.5 extinction of both resident and
mutant pathogens is prevented only if patches are larger than

smaller than the mutant invader. The emergence of ambout 450. However, for; =0.7, the mutant pathogen with

intermediate-transmissibility evolutionarily stable tyjgg5]
is not observed even in the pair approximation.

75,=0.75 is more likely to go extinct than the resident. If
patches are larger than about 780 the resident pathogen sur-

However, the oscillatory approach to equilibrium revealedvives, whereas the mutant type disappears unless patches are
by the pair approximation does give us a clue to understanthrger than 890. Therefore, if the actual size of the system, or
how the evolutionarily stable type appears in the spatiathe patch where the mutant first appears, is sufficiently small,

model. In Fig. 1 we show, versusy, for g=0.05,v=0.2
and7,= 7+ 0.05 forr;=0.2, 0.3, and 0.5. The initial popu-

extinction does happen for pathogens of large transmissibil-
ity, preventing invasion and leading naturally to the survival

lation consists of an equilibrium between health individualsof an intermediate type.
and individuals infected by the resident type plus a very This work was supported in part by the National Science

small amount of individuals infected by the mutant type.

Although invasion occurs in all caseg,(goes to zerp the
higher the value ofr;, the closer the population of infected

Foundation under Grant No. 0083885. M.A.M.d.A. acknowl-
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