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Mean-field approximation to a spatial host-pathogen model
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We study the mean-field approximation to a simple spatial host-pathogen model that has been shown to
display interesting evolutionary properties. We show that previous derivations of the mean-field equations for
this model are actually only low-density approximations to the true mean-field limit. We derive the correct
equations and the corresponding equations including pair correlations. The process of invasion by a mutant
type of pathogen is also discussed.
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Ecologists have become increasingly aware of the imp
tance of space in evolution and epidemiology. It has beco
apparent that inhomogeneities in spatially distributed po
lations can fundamentally change the dynamics of these
tems@1–5#. A simple lattice host-pathogen model, first intr
duced by Tainaka@6#, has become a paradigm for the stu
of spatially extended dynamics. In epidemiology, the mo
was introduced by Cominset al. @7# and further studied in
Refs. @8–11#. The model is a probabilistic cellular autom
ton, in which the state of each site is updated according
the state of nearby sites. Insight in the role of the parame
and global behavior of the system can be obtained from
mean field approximation, when all hosts and pathogens
perience the same local environment. This first approxim
tion to the dynamics can be improved by including pair c
relations.

The mean-field equations for this host-pathogen mo
were first presented by Randet al. @10# ~see also Refs
@12,13#!. Corrections due to pair correlations were cons
ered in Ref.@13#. Satulovsky and Tome@14# have also de-
rived the mean-field and pair-correlation equations fo
similar model. In this paper, we argue that the mean-fi
equations and the pair approximation in Refs.@10,12,13# are
actually only approximations to the correct equations. In
derivations in these works, the probability of infection of
susceptible host by an infected individual is overcounted
is the probability of a susceptible host being born on a em
site. These equations are valid only for small rates of tra
missibility of the pathogen and for small birth rates of su
ceptible hosts, when these overcountings are not impor
We obtain the correct mean-field equations for the well
tablished model of Tainaka@6# as well as the pair-correlatio
equations. The process of invasion by a mutant type is
discussed.

We consider a two-dimensional spatial lattice withN sites.
The state of each site can be either empty(0), occupied by a
susceptible (S), or occupied by an infected individual (I t).
At each time step, the susceptible hosts reproduce into e
nearby cell with probabilityg if that cell is not yet occupied
The probability of reproduction is independent for ea
neighbor. An infected host dies with probabilityv, the viru-
lence. Finally, an infected hostI t causes a neighboring un
1063-651X/2003/67~4!/047102~4!/$20.00 67 0471
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infected host to become infected with probabilityt, the
transmissibility. The subscriptt allows more than one type
to be present on the lattice. For the sake of simplicity
shall relabel the state~S! as ~1! and (I t) as (t).

The state of the system is denoted bys
5(s1 ,s2 , . . . ,sN), wheres i is the state at thei th site. We
call v i(s) the transition probability per unit time of the sta
at the sitei. The transition probabilities are

v i~s!5H 12~12g!ni if s i50

12~12t!mi if s i51

v if s i5t,

~1!

whereni5( jd(s i 1 j ,1) is the number of susceptible neigh
bors to i, and mi5( jd(s i 1 j ,t) is the number of infected
neighbors toi. The sum overj runs through all the neares
neighbors. We callz the total number of nearest neighbor
Note that, since a susceptible cannot be infected twice,
probability of becoming infected has to be calculated
‘‘one minus the probability of not becoming infected.’’ Thi
gives rise to the term 12(12t)mi. Similarly, an empty site
can become occupied only by offspring of a single susc
tible neighbor host, thus the term 12(12g)ni.

Allowing for the simultaneous existence of different typ
of pathogens, and mutation between the types, enables
study of evolutionary dynamics, where different types co
pete for the same susceptibles. When a pathogen of trans
sibility t reproduces, its offspring has probabilitym of hav-
ing transmissibilityt6e. For simplicity we assume thatt
may take only discrete valuestk5ke, k51,2, . . . ,M , where
M51/e. The state occupied by a host infected with pathog
tk will be labeled (tk). The transition probability per uni
time of the state at the sitei is then given by

v ik~s!5H 12~12g!ni if s i50

Vk if s i51

v if s i5tk8 ,

~2!

where Vk is the probability that susceptible hosts becom
infected by the pathogen with transmissibilitytk :
©2003 The American Physical Society02-1
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Vk5xFm2 pk211
m

2
pk111~12m!pkG ~3!

with

x5

12)
j

~12t j !
mj

(
j

pj

~4!

andpk512(12tk)
mk. For V1 andVM the terms inp0 and

pM11 should be discarded and the factor (12m) replaced by
(12m/2).

Approximate mean-field equations for the lattice mod
with a single pathogen type were obtained using simple c
siderations in Refs.@12,13# in the context of the same spati
model and in Ref.@14# for a similar spatial predator-pre
model. These equations fail to take into account the fact
a susceptible cannot be infected twice or that an empty
cannot accommodate more than one offspring. In orde
find the correct mean-field limit of the spatial model, w
have derived the master equation for the probability of
system as a whole. For the present case of multiple patho
types, it reads

dP~s,t !

dt
5(

i 51

N

(
k8

@P~sk8
i

!v is i
~sk8

i
!2P~s!v ik8~s!#,

~5!

whereP(s,t) is the probability of finding the system in th
states at time t. The sum overk8 should be included only
when the argument ofv ik8 is tk8 in the first term and when
it is 1 in the second term. We refer to Ref.@15# for the
derivation.

Given any function of the states,f (s), its ensemble av-
erage is given bŷ f (s)&5(sP(s,t) f (s). Differentiating
with respect tot and using Eq.~5! we find

d^ f ~s!&
dt

5(
i 51

N

(
k8

^@ f ~ isk8!2 f ~s!#v ik8~s!&, ~6!

where again the sum overk8 exists only when the argumen
of v ik8 is tk8 in the first term and when it is 1 in the secon
term.

Single type of pathogen. In the case of a single type o
pathogen the sum overk8 disappears and the transition pro
abilities simplify to Eq.~1!. To obtain an equation for the
average probability of empty sites, we considerf (s)
5d(s i ,0). ThenPi(0,t)[^d(s i ,0)& is the average probabil
ity that site i is in the state (0) in the timet. Similarly we
definePi(1,t) for the average probability of susceptible hos
and Pi(t,t) for the average probability of infected hosts.
the approximation, where thePi ’s are independent of the
site, they become the mean-field probabilities of each st
which we call x(t)5P(1,t), y(t)5P(t,t), and z(t)
5P(0,t)512x(t)2y(t). According to Eq.~6!,
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dPi~1,t !

dt
5 (

n51

N

^ f ~ns!vn~s!2 f ~s!vn~s!&. ~7!

Since f (ns) differs from f (s) only if n5 i , only this term
contributes to the sum. Noticing thatd( is,1)5d(s i ,0) we
get

dPi~1,t !

dt
5^d~s i ,0!@12~12g!ni#&

2^d~s i ,1!@12~12t!mi#&. ~8!

Similarly, we obtain

dPi~t,t !

dt
5^d~s i ,1!@12~12t!mi#2d~s i ,t!v&. ~9!

The averages can be calculated expanding the binom
(12g)ni and (12t)mi and approximating all pair~and
higher! correlations by simple products of one-site averag
@14,16#. We obtain

dx

dt
5zhz~gx!2xhz~ty! ~10!

and

dy

dt
5xhz~ty!2vy, ~11!

where we have defined the auxiliary function

hz~a![12~12a!z. ~12!

These are the correct mean-field equations for the h
pathogen model, taking fully into account the fact that
susceptible host cannot become infected twice and tha
empty site can accommodate only one offspring. One imp
tant consequence of including this feature, usually presen
spatial models~see, however, Ref.@14#!, is that the equations
become nonlinear ing and t, losing the scaling invariance
that allows one to consider onlyg1t1v51 @14#. The ap-
proximate equations in Refs.@10,12–14# correspond to tak-
ing hz(a)'za.

Two types of pathogens. When two types of pathogens ar
present, the competition that arises between them gives
to a very rich dynamics. We assume that the two types,
we call resident and mutant, have the same virulencev, but
different transmissibility rates,t1 for the resident andt2 for
the mutant. There are four one-site variables,z, x, y1, andy2,
corresponding to the probabilities of empty sites, suscept
hosts, infected by the resident pathogen, and infected by
mutant pathogen respectively. Once againz512x2y1
2y2.

The calculation of the mean-field equations in this case
more involved, and we refer to Ref.@15# for the details. The
result is

dx

dt
5zhz~gx!2xhz~y1t11y2t2!, ~13!
2-2
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dy1

dt
5x̄H m

2
hz~t2y2!1S 12

m

2 Dhz~t1y1!J x2vy1 ,

~14!

dy2

dt
5x̄H m

2
hz~t1y1!1S 12

m

2 Dhz~t2y2!J x2vy2 ,

~15!

where

x̄5
hz~t1y11t2y2!

hz~t1y1!1hz~t2y2!
. ~16!

It can be shown@15# that the approximate equations lea
to complete invasion if a small amount of a more transm
sible mutant pathogen is introduced in the resident pop
tion, whereas the full mean-field equations lead to coex
ence if ut22t1u is sufficiently small. Invasion happens on
if ut22t1u is larger than a threshold that depends ont1.

The mean-field equations can be improved by includ
pair correlations. This is done by keeping two-site probab
ties Pi j (ab) in the equations while reducing higher-ord
correlations to at most two-site terms. We do this reduct
according to the truncation scheme in Refs.@14,16–19#.

Pair correlations for a single type of pathogen. For a
single type there are three possible states per site,(0), (1),
and (t), and six two-site correlations. Since( j P( i j )
5P( i ), only three of them are independent. We call the
dependent correlationsu5P(10), r 5P(1t), and w
5P(0t). The other three are given byq[P(00)5z2u
2w, p[P(11)5x2r 2u, and s[P(tt)5y2r 2w, with
z512x2y. The five independent variables are, thereforex,
y, u, r, andw. The details of the calculation can be found
Ref. @15#. The result is

dx

dt
5zhz~gu/z!2xhz~tr /x!, ~17!

dy

dt
5xhz~tr /x!z2vy, ~18!

du

dt
5~q2u!hz21~gu/z!1vr 2uhz21~tr /x!

2gu@12hz21~gu/z!#, ~19!

dr

dt
5~p2r !hz21~tr /x!2vr 2whz21~gu/z!

2tr @12hz21~tr /x!#, ~20!

dw

dt
5uhz21~tr /x!1v~s2w!2whz21~gu/z!. ~21!

Pair correlations for two types of pathogens. We assume
once again that both the resident and mutant pathogens
the same virulencev, but different transmissibility rates:t1
for the resident andt2 for the mutant. There are four one-si
variables, z, x, y1 and y2 and ten two-site variables:u
04710
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5P(10), r 15P(1t1), r 25P(1t2), w15P(0t1), w2
5P(0t2), q5P(00), p5P(1q), s15P(t1t1), s2
5P(t2t2), and s125P(t1t2). Of these 14 variables, only
nine are independent. We choose them to bex, y1 , y2 , u, r 1 ,
r 2 , w1 , w2, ands12. The other five are related to them b
q5z2u2w12w2 , p5x2u2r 12r 2 , s15y12w12r 1
2s12, ands25y22w22r 22s12. We obtain

dx

dt
5zhz~gu/z!2xhz„~t1r 11t2r 2!/x…,

dy1

dt
5x̄xH m

2
hz~t2r 2 /x!1S 12

m

2 Dhz~t1r 1 /x!J 2vy1 ,

du

dt
5~q2u!hz21~gu/z!2gu@12hz21~gu/z!#

2uhz21„~t1r 11t2r 2!/x…1v~r 11r 2!,

dr1

dt
5 x̄̄

m

2
phz21~t2r 2 /x!1v̄S 12

m

2 D phz21~t1r 1 /x!

2w1 hz21~gu/z!2t1r 1@12hz21„~t1r 11t2r 2!/x…#

2r 1hz21„~t1r 11t2r 2!/x)…2vr 1 ,

dw1

dt
5 x̄̄

m

2
uhz21~t2r 2 /x!1v̄S 12

m

2 Duhz21~t1r 1 /x!

1v~s11s122w1!2w1hz21~gu/z!,

ds12

dt
5 x̄̄

m

2
r 2$t2@12hz21~t2r 2 /x!#1hz21~t2r 2 /x!%

1 x̄̄
m

2
r 1$t1@12hz21~t1r 1 /x!#1hz21~t1r 1 /x!%

1 x̄̄S 12
m

2 D r 2hz21~t1r 1 /x!

1 x̄̄S 12
m

2 D r 1hz21~t2r 2 /x!22vs12,

where

x̄̄[
hz21~t1y11t2y2!

hz21~t1y1!1hz21~t2y2!
.

The equations fory2 , r 2, and w2 can be obtained by ex
changing the subindices 1 and 2 in the equations fory1 , r 1,
andw1 , respectively.

When t1 , t2, and g are small, the functionshz(a) can
again be approximated byza and the approximate pair cor
relation equations are obtained. We found that the appr
mate equations present limit cycles in a much larger rang
parameters than the true mean-field equations@15#. Once
again, when the process of invasion is studied, we find
existence of similar types ifut22t1u is small. However, the
more transmissible pathogen type still wins over any l
transmissible ones, in the sense that either the less trans
sible type goes extinct, or its average number is alw
2-3
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smaller than the mutant invader. The emergence of
intermediate-transmissibility evolutionarily stable type@4,5#
is not observed even in the pair approximation.

However, the oscillatory approach to equilibrium revea
by the pair approximation does give us a clue to underst
how the evolutionarily stable type appears in the spa
model. In Fig. 1 we showy1 versusy2 for g50.05, v50.2
andt25t110.05 fort150.2, 0.3, and 0.5. The initial popu
lation consists of an equilibrium between health individu
and individuals infected by the resident type plus a v
small amount of individuals infected by the mutant typ
Although invasion occurs in all cases (y1 goes to zero!, the
higher the value oft1, the closer the population of infecte

FIG. 1. Invasion in the pair approximation forg50.05, v
50.2, andt25t110.05. The curves show the time evolution ofy1

and y2 ~dimensionless units! for t150.2 ~thin!, 0.3 ~thicker!, and
0.5 ~thickest!. The initial conditions arex50.28, y150.11, and
y250.001. The larger the value oft1, the closer to extinction the
population gets.
e

r,

ol.
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hosts gets to extinction~when y1 and y2 get close to zero
simultaneously!. If we assume that the initial population i
structured in patches, those patches receiving the mutant
are indeed likely to go extinct. If the patches are very lar
Fig. 1 shows that the number of infected hosts rises ag
after the near extinction leading to invasion by the mo
transmissible type. However, if the patches are finite,
population of infected may die. We can estimate the mi
mum size of these patches so that extinction can be
vented. If np is the total number of sites in the patch an
y1min , y2min are the values assumed byy1 andy2 at the near
extinction time, then the actual number of individuals~sites!
infected by the resident and the mutant pathogen types at
time isnp y1min , andnp y2min, respectively. When this num
ber goes below 1 there is less than one infected site in
whole patch, and the corresponding pathogen goes ext
For t150.2 the resident type disappears ifnp is less than
100, whereas the mutant type disappears only if the pa
falls below 45 sites. Typical patches observed in numer
simulations are larger than this, implying that invasion
indeed expected. Fort150.5 extinction of both resident an
mutant pathogens is prevented only if patches are larger
about 450. However, fort150.7, the mutant pathogen wit
t250.75 is more likely to go extinct than the resident.
patches are larger than about 780 the resident pathogen
vives, whereas the mutant type disappears unless patche
larger than 890. Therefore, if the actual size of the system
the patch where the mutant first appears, is sufficiently sm
extinction does happen for pathogens of large transmiss
ity, preventing invasion and leading naturally to the surviv
of an intermediate type.
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